Small deformations of extreme Kerr black hole initial data

نویسنده

  • Sergio Dain
چکیده

We prove the existence of a family of initial data for Einstein equations which represent small deformations of the extreme Kerr black hole initial data. The data in this family have the same asymptotic geometry as extreme Kerr. In particular, the deformations preserve the angular momentum and the area of the cylindrical end.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extreme Bowen-York initial data

The Bowen-York family of spinning black hole initial data depends essentially on one, positive, free parameter. The extreme limit corresponds to making this parameter equal to zero. This choice represents a singular limit for the constraint equations. We prove that in this limit a new solution of the constraint equations is obtained. These initial data have similar properties to the extreme Ker...

متن کامل

Linear stability of the non-extreme Kerr black hole

It is proven that for smooth initial data with compact support outside the event horizon, the solution of every azimuthal mode of the Teukolsky equation for general spin decays pointwise in time.

متن کامل

Decay Rates and Probability Estimates for Massive Dirac Particles in the Kerr–Newman Black Hole Geometry

The Cauchy problem is considered for the massive Dirac equation in the non-extreme Kerr–Newman geometry, for smooth initial data with compact support outside the event horizon and bounded angular momentum. We prove that the Dirac wave function decays in L∞loc at least at the rate t−5/6. For generic initial data, this rate of decay is sharp. We derive a formula for the probabilityp that the Dira...

متن کامل

Fe b 20 03 The Long - Time Dynamics of Dirac Particles in the Kerr - Newman Black Hole Geometry

We consider the Cauchy problem for the massive Dirac equation in the non-extreme Kerr-Newman geometry outside the event horizon. We derive an integral representation for the Dirac propagator involving the solutions of the ODEs which arise in Chandrasekhar's separation of variables. It is proved that for initial data in L ∞ loc near the event horizon with L 2 decay at infinity, the probability o...

متن کامل

v 2 2 8 Ju l 2 00 1 The Long - Time Dynamics of Dirac Particles in the Kerr - Newman Black Hole Geometry

We consider the Cauchy problem for the massive Dirac equation in the non-extreme Kerr-Newman geometry outside the event horizon. We derive an integral representation for the Dirac propagator involving the solutions of the ODEs which arise in Chandrasekhar's separation of variables. It is proved that for initial data in L ∞ loc near the event horizon with L 2 decay at infinity, the probability o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010